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Ab st r act 

2322’ 5 
The exact expression for the quantization e r ro r  a s  a function of the parameters 

defining the q u a t i z e r  , the error-weighting function, and the amplitude probability den- 
sity of the quantizer-input signal is presented. An algorithm is developed that permits 
us to determine the specific values of the quantizer parameters that define the optimum 
quantizer. This algorithm is then extended SO that optimum quantizers can be deter- 
mined for the case in which the quantizer-input signal is a message signal contami- 
nated by noise. In each of these cases the algorithm is based on a modified form of 
dynamic programming and is valid for both convex and nonconvex error-weighting 
functions. Examples of optimum quantizers designed with the first of these two algo- 
rithms for a representative speech sample a re  presented. The performance of these 
optimum quantizers is compared with that of the uniform quantizers. P’ 
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I. INTRODUCTION TO QUANTIZATION 

Quantization is the nonlinear, zero-memory operation of converting a continuous sig- 
nal into a discrete signal that assumes only a finite number of levels (N). 
occurs whenever physical quantities a re  represented numerically. 

Quantization 
In quantization the 

OUTPUT, y = Q ( x )  t 

INPUT, x 

Fig. 1. Input -output relationship of the N-level quantizer. 

primary objective is faithful reproduction of the quantizer -input signal at the quantizer 
output terminals. Such reproduction will be subject to some fidelity criterion such a s  
minimum mean-square e r r o r  between the quantizer-input signal and i t s  corresponding 
output. Figure 1 illustrates the input-output characteristic of a N-level quantizer. 

1.1 HISTORY O F  QUANTIZATION 

W. F. Sheppard is the f i rs t  person who studied a system of quantization. In 1898. 
he published a paper' indicating a method by which the most probable values of the 
moments of a table of values can be determined from calculations on the members of 
the table rounded off to  points equidistant on a scale. This rounding-off operation is 
equivalent to uniform quantization or, as it is usually called, analog-to-digital conver- 
sion. The input-output characteristic of an analog-to-digital converter is shown in Fig. 2. 

1 



INPUT, x 

Fig. 2. Input-output characteristic of the analog-to-digital converter. 

In their separate investigations of analog-to-digital conversion Widrow' and 
Kosya!tin3 have been able to show that if  the characteristic function corresponding to  the 
amplitude probability density of the quantizer - input signal is identically zero outside of 
some band and if  the converter step size "q" is smaller than some critical value related 
to  this bandwidth, then the amplitude probability density of the e r r o r  signal, the differ- 
ence between the analog-to-digital converter's input and output signals, will be given by 

(1 /q -q/2 C A C 4 2  
Pe(W = -i 

Lo elsewhere 

This density is pictured in Fig. 3 .  

With the advent of pulse code modulation4 studies were initiated concerning the appli- 
cation of this modulation scheme which involves sampling and quantization to the trans- 
mission of telephone signals. One of the first  investigators was Bennett. 5'6 In 1948, 
he analyzed the power density spectrum of the analog-to-digital converter's e r r o r  signal. 

Fig. 3. Analog-to-digital conversion e r r o r  probability 
density a s  derived by Widrow. 
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7 8 Similar studies have been performed by Velichkin and Ruchkin for the quantizer. By 

assuming that the converter-input signal was a joint Gaussian process with a flat, band- 
limited power density spectrum and that the converter contains "more than a few steps," 
Bennett was able to demonstrate that the conversion noise was uniformly distributed 
throughout the signal band. Other phases of his investigations led Bennett to conclude 
that, in the case of speech, it is advantageous to taper the steps of the quantizer in such 
a way that finer steps would be available for weak signals. This implies that for a given 
number of steps coarser  quantization occurs near the peaks of large signals. Tapered 
quantization is equivalent to  inserting complementary nonlinear, zero-memory trans- 
ducers in the signal path before and after an analog-to-digital converter. 
tures  this system of quantization which is sometimes called companding. 

Figure 4 pic- 
9 

I INPUT I I 
TRANSDUCER 

OUTPUT n TRANSDUCER 

L 1 

Fig. 4. Model of a tapered quantizer. 

9 Smith, using the model of Fig. 4 for the tapered quantizer, derived the input-output 
characteristic for the optimum input transducer with respect to the mean-square-error 
criterion. In doing this, he assumed that the analog-to-digital converter steps were 
sufficiently small  and therefore numerous enough to justify the assumption that the input 
signal's amplitude probability density is effectively constant within each step, although 

10 it varies f rom step to  step. 
for  slightly more general conditions. Several forms of nonoptimum companding have 
also been investigated and reported. 

A number of investigators assume that analog-to-digital conversion takes place and 
attempt to  reduce the e r r o r  by various forms of optimum operation on the converter 
input and output signals. 
developed postconverter filters, Graham,18 working with television signals, has devel- 
oped preconverter and postconverter filters, Spang19' zo has developed a linear feedback 
filter for use around the analog-to-digital converter, and Kimme and KuoZ1 have devel- 
oped a filter system (see Fig. 5) based on a patent of Cutler." 
RobertsZ5 have both approached the problem in a slightly different manner. Furman has 

studied the effect of dithering on the analog-to-digital conversion process, while Roberts 
has applied a similar technique - that of adding pseudo-random noise before conversion 

This characteristic has also been obtained by Lozovoy 

11-15 

Recently, work in the field of quantization has proceeded basically in two directions. 

For example, Katzenelson.16 Ruchkin,' and Stiffler" have 

23sZ4 and Furman 
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and subtracting the same noise after conversion - to the analog-to-digital conversion of 
television signals . 

LINEAR ANALOG -TO - LINEAR 

FILTER CONVERTER FILTER 
_C PRECONVERSION DIGITAL - POSTCONVERSION 

- 

-t 

LINEAR 
FEEDBACK 

FILTER 

Fig. 5. Quantization system of Kimme and Kuo. 

Other investigators such a s  Max,26 Lloyd,27 Gamash,28 B l ~ e s t e i n , ~ ~  T o u , ~ '  and 
Roe31 have attacked the fundamental problem of designing the optimum quantizer of a 
specified form. 
the allowable class  of quantizers, in each case their efforts, for the most part ,  have 
been concentrated on specific convex e r r o r  cri teria.  
locate all relative extrema of the e r r o r  surface and select the parameters that define 
the relative extremum with smallest e r r o r  a s  the defining parameters for the optimum 
quantizer . 

Although some of these investigators have assumed different forms for 

Essentially, their approach is to 

Recently, interest has developed in the problem of optimally quantizing signals con- 
sisting of the sum of a message signal and an independent noise signal. Myers32 has 

studied the amplitude probability density of the e r r o r  signal when the quantizer-input 
signal consists of a message signal with flat amplitude density and additive independent 
Gaussian noise. S t i g l i t ~ ~ ~  has determined approximately optimal quantizers for input 
signals when both the message and the noise a r e  Gaussian processes and the input sig- 
nal 's  signal-to-noise ratio is small. Bluestein 29'  34 has shown that i f  the input signal 
is composed of a message signal that is constrained to assume only the set  of discrete 
values (y.) i = 1 ,  2,  . . . , N plus an independent noise, then the optimum zero-memory 

filter (minimum mean-absolute-error criterion) will be a quantizer with output levels 
equal to the set  (y.) ,  i = 1 ,  2, . . . , N. He also determined asymptotically optimum 
mean-absolute-error quantizers for the case in which the message signal is continuous. 

1 

1 

This problem of determining the optimum quantizer for a signal consisting of a mes-  
sage signal contaminated by additive, independent noise has also been considered by 
Kuperman. 35  Kuperman makes use of decision-theory concepts to determine the min- 
imum mean-square-error quantizer subject t o  the constraint that the possible quantizer 
outputs be uniformly spaced and under the assumption that the quantizer has sufficient 
levels to  justify the assumption that the input-signal amplitude probability density is 
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effectively constant within each level, although changing from level to level. 

1 . 2  BRIEF STATEMENT OF THE PROBLEM 

In this report we are  primarily concerned with the design of optimum quantizers. We 
a r e  interested in two cases: first, in which the quantizer-input signal is a message sig- 
nal; and second, in which the quantizer-input signal is a message signal contaminated 
(not necessarily additive contamination) by noise. 
tically independent of the message. 

This noise may or  may not be statis- 

In each of these cases the quantizer will be viewed a s  a nonlinear, zero-memory 
filter. 
t izer that minimizes some measure of the error ,  that i s ,  the difference between the 
message signal and the quantizer-output signal. 
be the expected value of some function, called the error-weighting function, of the error .  
In general, we shall assume that this function is neither symmetric nor convex. 

Our objective is t o  develop an algorithm that can be used to determine the quan- 

The measure of the e r r o r  is taken to  

5 



11. QUANTIZATION OF A MESSAGE SIGNAL 

2 . 1  FORMULATION OF THE QUANTIZATION PROBLEM 

We have defined quantization as the nonlinear, zero-memory operation of converting 
a continuous signal into a discrete signal that assumes a finite number of levels (N). The 
quantizer's input-output characteristic is shown in Fig. 1. We see that the output is yk 

The % a r e  called the transition when the input signal x is in the range x 
values; that is; x is the value of the input variable at which there is a transition in the 
output from y to yk+l. k k 

taneous replica of the input message signal. 
is its input signal. Now, in specifying a desired output, we acknowledge that we demand 
more than the quantizer can accomplish. 

S X < \ .  k- 1 

k 
The y a r e  called the representation values. 

In most communication systems it  is desired that the quantized signal be an instan- 
Therefore, the quantizer's desired output 

There will  be an e r r o r  that will  be denoted 

e = x - Q[x]. (1) 

An appropriate mean value of e will be taken as a measure of how well the quantizer 
performs with respect to  the demands. This measure of the e r r o r  is given by 

Here, p ( E )  is the amplitude probability density of the quantizer-input signal x, and 
g[c-Q(c)] is a function of the e r r o r  that we call the error-weighting function. No restr ic-  
tions a re  placed on g(e) or px(c), although usually g(e) is taken to be a non-negative func- 
tion of i ts  argument because, in general, it is not desirable for positive and negative 
instantaneous e r r o r s  to  cancel each other. 

X 

In order to connect the parameters of the quantizer with the e r r o r  (we call the meas- 
ure of the e r ro r  d simply the e r r o r  when there is no chance for confusion), we introduce 
into ( 2 )  the explicit expression for the characteristic of the quantizer, 

Q(6) = y k  x ~ - ~  6 < \  k =  1 , 2  ,..., N. ( 3 )  

Thus we obtain for the e r r o r  

N-1 

(4) 

By definition, xo will be equal t o  Xp, the greatest  lower bound to the input signal, and 
xN wi l l  be equal to Xu, the least  upper bound to  the inpu.t signal. Therefore x and xN 
a r e  constants for any input signal. 

(xl ,  x2, .  . . , x ~ - ~ ;  y l ,  y2, .  . . , yN); that is, 

0 

From Eq. 4 it is clear that the e r r o r  d is a function of the quantizer parameters 

6 



Q = &x,, X2’. . . , y1 9 y2, .  * . t yN). (5 )  

The problem before u s  is to determine the particular xi ( i=  1,2,. . . , N-1) and y 
j 

(j = 1,2, . . . , N), the quantities that we call Xi and Y 

Such a minimization is subject to the constraints 
which minimize the e r r o r  8.  Eq. 4. 

j’ 

X I =  x Q X  
0 1  

2 x1 Q x 

3 x2 Q x 

which are  explicit in Fig. 1 and Eq. 3. 
along the e r r o r  surface d to a region of that surface s o  that every point in the region 
defines a quantizer characteristic ax) that is a single-valued function of the input signal 
x. The e r r o r  surface is defined on the (2N-1) space specified by considering the (2N-1) 
quantizer parameters as variables. Such a set  of constraints is necessary if the 
quantizer-input signal is to specify the quantizer-output signal uniquely. 

The problem of determining the optimum quantizer then is equivalent to the problem 
of determining the coordinates of the absolute minimum of the e r r o r  surface defined by 
(4) within the region of variation specified by (6). 

These constraints restrict  the region of variation 

2.2 DETERMINING THE OPTIMUM QUANTIZER 

We have indicated that the problem of designing the optimum quantizer is equivalent 
to the problem of determining the coordinates of the absolute minimum of the e r r o r  sur -  
face within the‘ region of variation. We know (see,  for example, A p o s t 0 1 ~ ~ )  that the 
absolute minimum of the e r r o r  surface will be either within the region of variation, and 
therefore a t  a relative minimum of the error  surface, o r  on the boundary that defines 
the region of variation. 
error-weighting function, we do not know whether the absolute minimum is at a relative 
minimum o r  on the boundary. This implies that the technique for determining the opti- 
mum quantizer should be a technique that searches for the absolute minimum of the e r r o r  
surface within (or  on the boundary of) the region of variation, rather than searching for 
relative extrema. 
discussion of the mechanics of dynamic programming is presented in Appendix A. 

Therefore, given an arbitrary input signal and an arbitrary 

36-39 A The method of dynamic programming is such a technique. 

In order to apply the technique of dynamic programming to the problem of selecting 
the optimum quantizer (that is ,  to  finding the absolute minimum of the e r r o r  surface 

7 



> I  

within the region of variation), it is necessary to define three sets  of functionals: the 
e r r o r  functionals, { Ei( xi)); the transition-value decision functionals, {X.( x)); and the 
representation-value decision functionals, {Yi(x)). 
for i = 1, 2 ,  . . . , N. 

1 
Each set of functionals has members 

These three sets  of functionals a re  defined in the following manner: I 

I 

7 X,(x) = XP, a constant; 

X2(x) = the value of x1 in the coordinate pair ( x l ,  y,) that minimizes 

X (x) = the value of x in the coordinate pair (x  y ) that minimizes N N- 1 N-1' N 

Y,(x) the value of y 1 that minimizes 

Y (x) = the value of y2 in the coordinate pair (x , ,  y2) that minimizes 2 

Y,(x) = the value of yN in the coordinate pair ( x ~ - ~ ,  yN) that minimizes 

(7) 
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Consider these three sets of functionals. The key to our understanding of their 
meaning l ies in understanding the meaning of the separate members of the e r r o r  func- 
tionals (7). The first member of (7) states that for a given range of the input signal x, 
or  equivalently fo r  a given region of the amplitude probability density of x, px(c), spec- 
ified by the boundaries xo and x we determine the y that minimizes the integral 1, 1 

0 
A 

The mechanics of determining this specific y1 is discussed below. 
a s  Y,(x). x = x1 and the value of the integral (10) for this value of y1 is recorded a s  

el(x1). Thus, if we specify a par- 
ticular x 

This y1 is  recorded 

This is done for all x1 in the range Xp d x C Xu. 
say, x1 = Q ,  we know that the optimum choice for y is Y,(Q). 1' 1 

considering the quantization of the signal in the input interval x Q x S x2, for  a vari- 
able x2, into two levels. 
must minimize the quantity 

1 

Now consider the second member of Eq. 7.  This functional indicates that we a re  

0 
In order to perform this operation in the optimum manner, we 

with respect to the three variables x 1, yl ,  and y2. The first of these two integrals when 
minimized with respect to y1 (and it only contains y ) is simply the first  e r r o r  functional, 

E1(x1). 
tion 

1 
Then, for a given x2, we must determine the x and the y2 minimizing the func- 1 

The x1 that minimizes (12) is recorded as X,(x), x = x2; the y2 that minimizes the 
expression is recorded as Y2(x), x = x2. 
e2(x2). 
fore, if the region xo d x C x is to be quantized into two levels, we know from the deci- 
sion functionals that the optimum transition value is specified by X = s ( x 2 )  and that 
the two optimum representation values a re  given by Y2 = Y2(x2) and Y1 = Y1(Xl). 

Instead of considering every member in turn, let us skip to the last member of (7). Here, 
we a re  given the input range xo d x C x 
tize this range into N levels in the optimum manner. 
the quantity 

The value of the expression is recorded as 
These operations a re  performed for all x2 in the range Xp S x2 Xu. There- 

2 

1 

Clearly, discussion of this type can be presented for each of the members of ( 7 ) .  

a variable x is assumed. We want to quan- N; N 
This requires that we minimize 
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This task is not N-1' with respect to the parameters y 1s y29 . . * ,  YN; x2P x 
a s  difficult as it may seem. 
a s  a function of x1 is given by the first e r r o r  functional E1(x1). 

of (13 )  involving y 

Note that the minimum of the f i r s t  t e rm with respect to y1 
This is the only te rm 

Thus ( 1  3 )  can be written as the minimization of 1' 

But note that the minimization of 
a s  a function of x2 is given by 1 

N-1' with respect to y 2 ,  y3, ..., yN; X 1 '  X2' - . . I  x 
the f i rs t  two te rms  of Eq. 14 with respect to y2 and x 

EZ(x2). 

equivalently as  the minimization of 
And these a re  the only te rms  involving y2 and xl.  Thus Eq. 14 can be written 

with respect to y3, y4, . . . , yN; x2, x3, . . . , x ~ - ~ .  

zation of 
This process can be continued until we. obtain as an equivalent for (15)  the minimi- 

with respect to x ~ - ~  and yN. 
recorded as s ( x )  and YN(x), respectively, x = xN. 
xN is recorded a s  eN(xN). 
evaluated for all xN so that XI 6 xN S Xu. 

sion functionals from the point of view of search paths along the e r r o r  surface. 

For a specific xN, the xNe1 and y that minimize (16)  a re  N 
The value of (16)  for a specific 

The two decision functionals and the e r r o r  functional a r e  

Appendix B gives an alternative presentation of this explanation of the e r r o r  and deci- 

Now, we a r e  in a position to use the functionals just derived to determine the param- 
e te rs  defining the optimum quantizer. 
entire input-signal range. 
N-level quantizer. 

Note that when xN = Xu we a r e  considering the 
Thus, E (X ) is the total quantization e r r o r  for the optimum 

th N u  
Then from the definition of XN(x), the (N-1) transition value is 

Likewise, from the definition of YN(x), the (N)th representation value is 

Continuing from our definition of - ,(x) and YN-2(x), we find that the (N-2)th tran- 

sition value is 

10 
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%-2 = %-l(%-l) 

and the (N-l)th representation value is 

yN-l = yN-l(%-l)' 

This process can be continued until finally we have 

y 1  = Y,(X,), 

which is the last parameter needed to  completely define the optimum quantizer. 

2.3 SIMPLIFICATION OF THE ERROR FUNCTIONALS 

We have presented a method by which the parameters that define the optimum quan- 
tizer can be determined. 

Eq. 7, with the hope of reducing the complexity of the minimization operation. 

Now, we want to take a closer look at the e r r o r  functionals, 

We begin by considering the kth member of (7), that is ,  

(17) "k min 
'k(%) = Xk-l'Yk (t*-1(z-llt 1 

xl'(%-l sx k sx u %-1 

Since E k - l ( ~ - l )  is not a function of yk, the kth member of (17) may be equivalently 
written 

We now limit our consideration to the last term of (181, that is, to 

From the original statement of the quantization problem, Eqs. 4 and 6, we see that the 

y k 
Therefore, the yk that minimizes 

a re  unconstrained variables, that is the region of variation for yk is -00 S yk Q +m. 

must be a relative extremum 

with respect to yk. If g is a 

of 

5 [g( c'yk) Px( 1 (21) 

continuous function of its argument, the yk minimizing (20) 

11 



wil l  be a solution of 

In general ( 2 2 )  will have a multiplicity of solutions, each of which wi l l  be a function of 
the remaining parameter of minimization, s-~. It will  be necessary to determine which 
of these solutions is the one yielding the absolute minimum of (21) by substitution of the 
solutions in the equation. (It wi l l  be shown 
that if g is sti-ictly cmivex theii (22 )  wi?? have only one sdut icn.)  If g is rmt csr~tinuoue, 

y wi l l  be found by a direct search along the set  of possible values for y k 

* 
This particular y will be indicated by y k k' 

* 
k' 

Using this result, we may write Eq. 17 as 

This indicates that the number of parameters over which the formal minimization must 
be performed can be reduced from (2N-1) in Eq. 7 to (N-1) when the e r r o r  functionals 
a r e  written in the form of (23): 

x n = x  0 1  s x  s xu 

m in 
1 E ( x ) =  X 2 2  

x1sx1sx2'(xu 

From a practical point of view we cannot determine the e r r o r  functionals (or for that 
matter the decision functionals) in closed form but only at several points that specify a 
grid. 
dimensional search for  each value of x 
substantially reducing the complexity and length of the computations. 

This result, then, enables u s  to determine each of the e r r o r  functionals by a one- 
rather than by a two-dimensional search, thus k' 

2 .4  QUANTIZATION - A SECOND POlNT O F  VIEW 

We have defined the quantization e r r o r  to be 



Now, we want to derive an alternative expression for the 
interpret the optimum quantizer from a different point of 

We begin by defining the random variable A a s  

A = 5 - Y i + l .  

e r r o r  which will  allow us to  
view . 

Clearly, A is a random variable corresponding to the amplitude of the e r r o r  signal, Upon 
substitution of (26) in (25) d becomes 

But this equation can be written 

where U - ~ ( Q )  is defined by 

By interchanging the order  of summation and integration, Eq. 28 becomes 

We want to identify the te rm of (29) that involves the summation, that i s ,  

Consider the kth t e rm of this sum. This term represents the portion of the input signal’s 
amplitude probability density lying between xk-l S This has now been shifted so 
that the representation value yk corresponding to this interval is at the origin. Thus the 
t e rm is the contribution to  the amplitude probability density of the e r r o r  by input signals 
in the range 

< xk. 

Xk-1 5 

This permits us to conclude that the sum, Eq. 30, is the amplitude probability density 
of the e r r o r ,  

13 



and therefore that Eq. 29 may be written 

Now recall that we minimize d with respect to the xk and y.  when we design the opti- 
J 

mum quantizer. With respect to the e r r o r  given by (32)  these parameters xk and y .  a re  
involved in the expression for  pe(X). Therefore, we conclude that the problem of 
designing the optimum quantizer is equivalent to shaping the amplitude probability den- 
sity of the e r ro r  signal so that some property of this density specified by the e r ro r -  
weighting function g is minimized. 
permitted in  the quantizer (N) and by the input-signal amplitude probability density p,(c). 

J 

This shaping is constrained by the number of levels 



I . 
~b 111. SOME RESULTS FOR RESTRICTED ERROR-WEIGHTING FUNCTIONS 

An alogrithm that allows us  to determine the parameters that define the optimum 
quantizer has been developed. 
weighting functions which we shall call monotonic error-weighting functions. 
tonic error-weighting function g(e) is a function such that for any e 2 0 and any 6 > 0 ,  

g(e+6) > g(e); and for any e That is ,  g(e) is a mono- 
tonically decreasing function for  negative error  and a monotonically increasing function 
for positive error .  

In particular, we a r e  interested in examining the possibility that the absolute mini- 

We  now want to examine this solution for a class of e r r o r -  
A mono- 

0 and any b < 0, g(e+b) > g(e). 

mum will be at a relative minimum of the error  surface. This will lead to a discussion 
of the properties of the relative extremum of the e r r o r  surface within the region of var- 
iation. 

3.1 NATURE OF THE ABSOLUTE MINIMA 

I Our primary concern is to prove that the absolute minimum of the quantization e r r o r  
i 
I 

within the region of variation is at a relative extremum, a minimum, of the e r r o r  sur- 
face, rather than on the boundary defining the region of variation, i f  the error-weighting 
function is monotonic and if the quantizer-input signal amplitude probability density is 
not entirely discrete. 

I 

We begin by assuming that the quantizer-input signal x, a signal that is not entirely 
discrete, is quantized into (N) levels by a quantizer with transition values 

I 

I {xJ, i =  i , ~ ,  ..., ~ - 1  

and representation values 
I 

{yj), j = - 1 , 2  ,..., N. 
i 

The quantization e r r o r  for this set of quantizer parameters is 

We shall construct an (N+l)-level quantizer in the following manner: 

1. Select an interval of the N-level quantizer such that the continuous portion of the 
The transi- 

Select an (Nfh  transition value a at a point in this interval where the continuous 

input amplitude probability density is not zero everywhere in this interval. 
tion values at the end of this quantization interval will be labeled x. , -~ and x 

portion of the density is nonzero and such that a f y 

yk, and for the interval a d & < \ the value Q. 

k' 
2. 

k' 

If a < y 
3. If a > yk select as the representation value for the interval x ~ - ~  d & < a the value 

select as representation value k 
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k' 
for the interval xkql S 6 < a the value a ,  and for  the interval a S 6 < 5 the value y 

the N-level quantizer. 
4. The remaining parameters of the (Nt1)-level quantizer a r e  identical to those of 

If we denote by &"+l the e r r o r  for the (Nt1)-level quantizer constructed in this man- 
ner,  the e r ror  difference 

will  be 

In writing Eq. 34 we have assumed a > yk. 
case a < y 

A parallel expression can be written for the 

k' 
If we write the first integral of (34)  a s  the sum of two integrals, upon collection of 

te rms  we have 

16 

(35) 

We observe that since a > yk, the quantity [g(g-yk)-g(6-a)] wi l l  be positive for all values 
of 6 in the range a s 6 < \ if g is a monotonic error-weighting function. By construc- 
tion of the quantizer, px(c) is not zero over the entire interval of integration, Eq. 35, 

and therefore 

A& > 0. (36) 

(It should be clear that a similar argument can be presented to show that Eq. 36 holds 

for a < yk.) 
It then follows that if g is a monotonic error-weighting function and if ~ " ( 6 )  is not 

entirely discrete, there exists at least one (Nt1)-level quantizer with less  e r r o r  than 
any N-level quantizer. 

In order to use this result, we must consider some properties of boundary solutions. 
Solutions on the boundary a r e  in part specified by an equation of the form 

x = x  j j t l  

which indicates the parameter on the boundary, since the region of variation is defined by 

x p =  x s x  
0 1  

x s x  1 2  
(37) 

x ' ( X N  = xu. N- 1 



The property that we wish to note is that if  a quantizer with (N) levels is defined by a 
point on the boundary, i ts  e r ro r  cannot be less  than the e r ro r  for the optimum (N-1)- 
level quantizer. 
the quantization e r ror ,  Eq. 33. Referring to (33) .  we realize that a solution on the 
boundary requires one of the terms in the sum to be 

This can be easily verified by examination of the equation that defines 

It is clear that the numerical value of such a term is zero. Thus, this term has the 
effect of reducing the number of effective quantizer levels to (N-1). Therefore, the 
smallest possible value for the e r ro r  in this N-level quantizer is the e r r o r  for the opti- 
mum (N-1)-level quantizer. 

Now, returning to the particular problem at hand, we recall that we a r e  able to con- 
struct at least one (Nt1)-level quantizer with less  e r r o r  than any N-level quantizer when 
the error-weighting function is monotonic and p ( E )  is not entirely discrete. Now, since 
the e r r o r  is less  for  at least one (N+l)-level quantizer, the optimum (Nt1)-level quan- 
tizer must be defined by a relative minimum of the e r r o r  surface within the region of 
variation, rather than by a point on the boundary. 
ited by the decrease in e r ror .  
g is a monotonic error-weighting function and pX($) is not entirely discrete, then the 
optimum quantizer is always defined by a relative minimum of the e r r o r  surface within 
the region of variation. 

X 

A solution on the boundary is prohib- 
Since this result is independent of N, we conclude that if 

3 . 2  LOCATION OF THE RELATIVE EXTREMA 

The preceding section suggests that it will be of value to locate the relative extrema 
(and in particular the relative minima) of the e r r o r  surface a s  an alternative method of 
specifying the parameters defining the optimum quantizer. From calculus40 we know 
that the quantizer e r r o r  surface d will attain a relative extremum (or a saddle point) 
for those values of the (2N-1)-quantizer parameters that force the (2N-1) first partial 
derivatives of d to become zero simultaneously. That is ,  the surface's relative 
extrema a r e  solutions of the set of simultaneous equations 

- 0  i =  1.2 ,..., N-1. a b  
axi 
- -  

Substituting Eq. 4 in Eq. 38 we have 
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a d  
a X; - [ ~ ( X ~ - Y ~ ) - ~ ( X ~ - Y ~ + , ) I  pX(xi) = 0, -- i = 1 ,2 , .  . . , N -  1. 

I I 

If px(E) is nonzero between i ts  greatest  lower bound Xp and i ts  least  upper bound Xu, 

Eq. 40 becomes 

g(xi-yi) - g(xi-yitl) = 0, i = 1 ,2 , .  . . , N -  1. (43) 

Therefore, for the case of nonzero px(c) in the interval Xp < 5 < Xu. the relative extrema 
a r e  solutions of (39) and (41). 
is that i ts  first derivative exists; that is ,  g is continuous. 

In writing Eqs. 39-41 our only assumption concerning g 

It is of interest at this point in our discussion to observe that if  g is a symmetric, 
monotonic error-weighting function, then (41) may be equivalently written 

Y i t  1 ’ Y i  x. = , i =  1 , 2  ,..., N - 1 .  
1 

This follows from graphical examination of Eq. 41 and the realization that for symmetric, 
monotonic error-weighting functions this equation wi l l  always have a unique solution. 

Joel Maxz6 has developed an algorithm to determine the relative extrema of 8, using 
2 Eqs. 39 and 41 for the special case in which the error-weighting function is ( e )  . 

is ,  with d given by 
That 

This algorithm consists of choosing a value for y 
which in this case reduces to 

and then alternatively applying Eq. 39, 1 

- 7r-1 

yk - s” dCIPx(C)l ’ 
Xk- 1 

(44) 

and Eq. 42 to determine f i rs t  approximations to the values of the quantizer parameters 
that define relative extrema of the e r r o r  surface. 
x a s  x and y a r e  known; the f i rs t  application of (42) will  yield y2, a s  x and y a r e  
both known at this stage of the process. The second application of (44) yields x2; the 
second application of (42) yields y3; etc.) When the process has been completed, that 
i s ,  when the approximate value of yN is calculated, the last  member of (44), which has 
not yet been used, is used as a check to see if these approximate parameters actually 
define a relative extremum. If the last  member of (44) is not satisfied, we select 
another value for y and repeat the process. 
been located. 
relative extremum on the surface. 

(The f i rs t  application of (44) wi l l  yield 

1’ 0 1 1 1 

If it is satisfied, a relative extremum has 1 
The search then continues with the objective of locating any remaining 

The entire surface must be searched. 
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It is a straightforward matter to extend Max's algorithm to the more general case 
for  which the error-weighting function is monotonic. 
tical with the one above, except that the approximate xi are  determined by Eq. 39 and 
not by i ts  mean-square form Eq. 44. 

This extended algorithm is iden- 

So much for the case of nonzero px(c) in the interval Xp C 5 < Xu. Now consider the 
case in which p (5) is zero over one or  more subintervals in the interval X < 6 C Xu. 
Relative extrema will  s t i l l  exist, but in general they will  be more numerous and more 
difficult to locate. 
is due to the nature of Eq. 40, that is. to the factor px(xi). 
has been obtained, thus fa r ,  for determining the relative extrema in this case. 

X P 

The additional difficulty encountered in locating the relative extrema 
No satisfactory algorithm 

3 . 3  EXAMPLE 

Our objective here is to apply the results just obtained. In particular, we want to  
determine the optimum two-level quantizer for a signal having the amplitude probability 

Fig. 6. Amplitude probability density 
for the example. 

I I 
I I 
I I 

- €  
-1 -1/5 1 /5  1 

density shown in Fig. 6 .  
square error .  

We choose to  optimize in the sense of minimizing the mean- 

Successive application of the algorithm above yields three relative extrema: 

1 1. x = - -  1 5 

3 
y 1 =  - -  5 

1 - -. 
y2 - 5 '  

2 .  x = o  1 
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1 3. x1 = 5 

I 
-1 -1 

1 
y 1 =  - -  5 

- E  1 

3 
Y2 = 

If these three relative extrema a r e  examined, we find, f i rs t ,  that the absolute min- 
imum of the surface is specified by the second set  of parameters, that is, by 

Second, we find that the two other relative extrema a re  in reality saddle points, 
We shall now consider a modification of the input probability density shown in Fig. 6. 

The density is  modified by decreasing the width of the spike to one-half i t s  former value 
and increasing i ts  height accordingly. If we apply This new density is shown in Fig. 7. 

35 
16 
- 

5/16 
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. 
b 

the algorithm of section 3.2, we again find that the e r ro r  surface has three relative 
extrema: 

1 1. x = - -  1 5 

2. x = o  1 

53 
y 1 = - 1 6 3  

53 
y2 = 163 

1 3. x = -  1 5  

Investigation indicates that relative extrema one and three a re  relative minima with 
Its  e r r o r  is identical values for  the error .  

greater than that of the two other relative extrema which a re  therefore the absolute min- 
ima of the e r ro r  surface. 

Relative extremum 2 is a saddle point. 

3 . 4  DISCUSSION 

The example just given points out the difficulty that is encountered when we attempt 
to locate the absolute minima of the e r r o r  surface by locating all of the relative extrema. 
Basically, the difficulty is that we do not know how many relative extrema wi l l  be located 
in the search until all points in the region of variation have been considered. 
expect the number of relative extrema to increase and the search to become more com- 
plex a s  the number of levels in the quantizer is increased, we are  forced to conclude that 
in general this technique is not practical. 
tion 3 . 2  is of real  value only when we can prove that there is only a single relative extre- 
mum, a relative minimum, within the region of variation. In the sequel we shall consider 
three special cases in which the e r r o r  surface has this single extrema property. 

Since we 

To be more specific, the algorithm of sec- 

3.5 CONSTRAINED TRANSITION VALUES 

Other than the general problem of quantization that we have been considering, there 
a re  several quantization schemes of interest. For example, let us  assume that the 
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transition values of the quantizer a r e  specified. 
by the quantization equipment, the system containing the quantizer, or some similar 
constraint . 

Such a specification might be required 

For such a quantizer, f rom Eq. 4, we know that the quantization e r r o r  wi l l  be 

In (45) the error  i s  a function of the yi only. 
strained variables, the absolute minimum of the e r r o r  surface will  be located at  a re l -  
ative extremum. 

We also know that since the yi a r e  not con- 

The relative extrema of this e r r o r  surface, Eq. 45,  a re  specified by Eq. 39 with 
fixed transition values, that is ,  by 

In writing this equation, we have assumed the error-weighting function g to be contin- 
uous. Each of the members of this equation contains only 
one yk. Therefore, the members may be solved independently to determine the param- 
eters  specifying the relative extrema. 

tions that will yield a single solution (a relative minimum) to Eq. 46. 

attack wi l l  be to determine a constraint on the error-weighting function which will  force 
every relative extremum to be a relative minimum. 
saddle points) to be relative minima is sufficient to guarantee that the e r r o r  surface wi l l  

have only one relative extremum (a minimum). 
be the absolute minimum of the surface. 

Consider (46) for a moment. 

In order to satisfy our objectives, we must now determine the error-weighting func- 
Our method of 

Forcing all relative extrema (and 

This single relative minimum will then 

In order to prove that a relative extremum is a relative minimum, we must show that 
the matrix of second partial derivatives of d with respect to yk, k =  1, 2 ,  . . . , N, that is, 

evaluated at the relative extrema is positive definite. Since the y a re  independent, the k 
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off-diagonal te rms  of (47) a re  
nite reduces to demonstrating 

zero; therefore, demonstrating that (47) is positive defi- 

that the N-terms 

a re  greater  than zero. 
values, we have 

Referring to Eq. 33 as  interpreted for constrained transition 

Since px($) is positive, a sufficient condition for the members of (49) evaluated at the 
relative extrema to be positive is for 

to  be positive. 
called strictly convex functions. 

Functions g for which the members of (50) a r e  greater than zero a r e  
Formally, a function g is strictly convex if and only if 

g[aa+(l-a)b] < ag(a) + (1-a)g(b), for all b > a and all a such that 0 < a  < 1. (51) 

Therefore, we can conclude in the case of constrained transition values and strictly 
convex error-weighting functions that the e r ror  surface has a single relative extremum 
that is a relative minimum. 
face, and is easily located by the method of calculus. 

3.6 CONSTRAINED REPRESENTATION VALUES 

This relative minimum is the absolute minimum of the sur- 

Another type of quantization that is of interest is the case for which the representa- 
tion values are specified under the constraint 

Yk < Yk+l, k = 1,2, N-1. (52) 

By making use of Eq. 4 written for constrained representation values, the e r r o r  is 

If px(c) is nonzero in the interval Xp < $ < Xu, then the relative extrema a r e  solutions of 

[ ~ ( X ~ - Y ~ ) - ~ ( X . - Y ~ + ~ ) ]  1 = 0 ,  i = ~ 2 , .  . . , N-I (53) 

which is Eq. 41 adapted to  constrained representation values. Proceeding in a manner 
analogous to that in section 3.5, we can show that i f  g is a monotonic error-weighting 
function (as previously defined), then this e r ror  surface wi l l  have a single relative extre- 
mum that will be a relative minimum and therefore the absolute minimum of the surface. 
The optimum transition values in this case a re  specified by Eq. 53. 
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3 . 7  CONSTRAINED QUANTIZER-INPUT SIGNALS 

In sections 3. 5 and 3. 6 the structure of the quantizer was constrained and in each 
case sufficient conditions were found on the error-weighting function so  that the e r r o r  
surface will have a single relative extremum, a relative minimum. In a recent paper, 
P. E. Fleischer has constrained the error-weighting function to be g(e) = e2 and he has 
derived a sufficient condition on the amplitude probability density of the quantizer-input 
signal so  that, once again, the e r r o r  surface will  have one relative extremum, a relative 
minimum. 

41 

Fleischer's sufficient condition is given by the inequality 

where p (6 )  is required to be continuous. 
ment that we used in section 3. 5, differing only in that he used a row-sum condition 
to determine the sufficient condition for  the matrix of second partials (see Eq. 47) to be 
positive definite. 

His method of proof follows the type of argue- 
42 X 

The form of Fleischer's condition makes it almost impossible to use for experimen- 
tally obtained amplitude probability densities. Referring to Eq. 51, however, we see  
that (54) is equivalent to requiring that the function 

~ 6 )  = -ln[px(~)l  (55) 

be strictly convex. Observing that the strictly convex criteria,  (51), may be alterna- 
tively written 

for all b > a and for all a such that 0 < a < 1, we shall write (55) 

and, by direct substitution of (57) in (56), obtain 

If this inequality i s  satisfied for all b > a and all a such that 0 < a < 1, then Fleischer 's  
condition is satisfied. 

Examination of Eq. 58 indicates several properties of the amplitude probability den- 
Firs t ,  if we consider the case in which px(a) = px(b), si t ies which satisfy this condition. 

we find that (58) can be written 

px[aa+(1-a)b] > pJa) = px(b) (59) 
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This implies that the p (E) satisfying this condition must have only one relative extremum 
and that this relative extremum is a relative maximum. 
in which px(b) = ppx(a), (58) becomes 

X 
Second, if we consider the case 

From a graphical examination of this condition we see that the p,(E) that satisfy 
Fleischer's condition possess a mild convexity property. 

3 . 8  CONCLUSION 

We have shown that under certain conditions on the error-weighting function and the 
probability density of the quantizer-input signal the optimum quantizer is defined by a 
relative extremum of the e r r o r  surface. 
surface's relative extrema. 
quantizer, i t  is necessary to locate all of the relative extrema of the surface and evaluate 
the e r r o r  at each of these points. In most cases, because of the large number of relative 
extrema expected, this technique is not a practical method of determining the optimum 
quantizer. 

We then derived equations defining the e r r o r  
In order to  apply this technique of determining the optimum 
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IV. QUANTIZATION OF A SIGNAL CONTAMINATED BY NOISE 

We have considered the problem of designing the optimum quantizer for a specified 
message signal. 
before reaching the input terminals of the quantizer. We shall now develop an algorithm 
by which the parameters defining the optimum quantizer for this class of quantizer-input 
signals can be calculated. Basically, our approach is to  t reat  the quantizer a s  a non- 
linear, fixed-form, zero-memory filter. This implies that our objective will  be to  
determine the parameters defining the filter of this class with the minimum er ror .  

In many cases,  however, the signal of interest  is contaminated by noise 

We shall consider the relationship that exists between the optimum quantizer for this 
class of signals and the optimum zero-memory filter when the error-weighting function 
in each case is 

2 g(e) = e . 
We shall also demonstrate how the algorithm developed for quantization can be extended 
to  determine optimum nonlinear, zero-memory filters with other fixed forms. 

4.1 FORMULATION OF THE QUANTIZATION PROBLEM 

Mathematically, the quantizer-input signal x which consists of the message signal 
corrupted by noise may be written 

x =  s $ n ,  (63) 

where s is the message signal, n is the noise, and the symbol @ indicates some com- 
bination of the two variables, s and n. Two combinations of interest  in communication 
systems a re  

x = s t n  

and 

x = s + n .  

It will be seen from Eq. 65 that any combination @ for which a joint probability density 
of x and s can be defined is an allowable combination. 

Proceeding in a manner analogously to  the filtering problem, we select as the desired 
quantizer output the message signal, s. That i s ,  we desire  that the quantized signal 

be an instantaneous replica of the message portion of the quantizer-input signal. 
eral ,  we shall demand more than the quantizer can accomplish. 

In gen- 
There will be an e r ro r ,  

e = s - Q(x). (64) 

We shall take an appropriate mean value of e a s  a measure of how well the quantizer 



1 -  performs with respect to the demands. This measure of the e r ror  is given by 

I ( 5 ,  .rl) is the joint amplitude probability density of the quantizer-input signal x and 
'XJ s 
the message signal (which is also the desired output signal) s. As in the previous case, 

~ 

Fig. 8. Input-output relationship of the N-level quantizer. 

g is the error-weighting function. 
either convex or symmetric. 

Eq. 65 the explicit expression for the characteristic of the quantizer (Fig. 8), 

The error-weighting function is not required to be 

In order to relate the parameters of the quantizer to the e r ro r  8, we introduce into 

(Figure 8 is identical to Fig. 1 except that in Fig. 8 we have made explicit the fact that 
is not required to be less  than y,.) Substituting (66) in (65), we have for the quan- 'k- 1 

tization e r ro r  
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Here, xo is equal t o  X 

xN is equal to Xu, the least upper bound to  the quantizer-input signal. 
the greatest lower bound to  the quantizer-input signal x; and P' 

From Eq. 67 it is clear that the e r r o r  d is a function of the quantizer parameters 

(XI, x2, .  * B XN-1; y1l y29 * .  . I YN). 
The problem before us then is identical in form to the problem encountered in 

Section 11. That is, the problem is to determine the particular x. (i= 1 , 2 , .  . . , N-1) and 
y .  ( j  = 1,2,  . . . , N),  the X. and Y .  that minimize the e r r o r  8, Eq. 67. Such a minimiza- 

tion is subject t o  the realizability constraints 

1 

J 1 J 

XP' x c x1 
0 

x s x  1 2  

which a r e  explicit in Fig. 8. This problem is equivalent t o  that of determining the 
coordinates of the absolute minimum of the e r r o r  surface defined by (67) within the 
region of variation specified by (68). 

4.2 QUANTIZATION ALGORITHM 

Our objective is to present an algorithm that will permit us  to  determine the param- 
eters  defining the absolute minimum of Eq. 67, subject to  the constraints of Eq. 68. 
Before we consider this algorithm we should compare this e r r o r  with the e r r o r  in the 
case for which the quantizer-input signal is an uncorrupted message signal. 
tization e r ror  for  an  uncorrupted quantizer-input signal is given by Eq. 4. 
tant thing to observe in comparing these two e r r o r  expressions, Eqs. 4 and 67, is that 
they a r e  almost identical j.n form. 
identical, we would expect to  be able to  use the same technique to  determine the optimum 
quantizer in this case a s  we  used fo r  an uncorrupted message signal. 

The quan- 
The impor- 

Therefore, since the constraints, Eqs. 5 and 68, a r e  

In order to apply the technique that we used earlier,  that i s ,  the technique of dynamic 
programming, it is necessary to define three sets  of functionals: e r r o r  functionals, 
{ei(xi)h transition-value decision functionals, {X.(x)}; and representation-value decision 
functionals, {Yi(x)}. 
defined as follows: 

1 
The (N) members of each of these three sets  of functionals a r e  



J 

Xl(x) = XI, a constant; 

X,(x) = the value of x in the coordinate pair (xl, y,) that minimizes 
1 

) that ~ - 1  YN 
x (x) = the value of x ~ - ~  in the coordinate pair (x N 

minimizes 
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Y1(x)  = the value of y that minimizes 1 

Y,(x) = the value of y in the coordinate pair (x,, y,) that minimizes 2 

YN(x) = the value of yN in the coordinate pair ( x ~ - ~ ,  yN) that minimizes 

It follows from Eq. 69 that each of the members of the sets  {Xi(")} and {Yi(x)} is 

These three sets of functionals a r e  identical in nature and purpose to those defined 
defined only over the interval XI ,< x G Xu. 

in Eqs. 7, 8, and 9. Once they a r e  calculated, the procedure outlined in section 2 . 2  is 
used to determine the parameters of the quantizer with minimum er ror .  

4.3 SIMPLIFICATION OF THE ERROR FUNCTIONALS 

Consider the kth member of the set of functionals {ei(xi)}, Eq. 69, 

th Referring once again to Eq. 69, we observe that Ek-l(xk-l) is not a function of the k 
representation value, yk. 
natively 

By taking this into consideration, (72) may be written alter- 

the minimization with respect to  yk can be k-1' Thus, for specific values of xk and x 
carried out independently. The specific yk that minimizes 

J:k '5 J-: d?[g(?-Yk) P,, s(6, ?I] 
k- 1 

(74) 

30 



* 
will be a function of Xk and Denoting this value of yk by y , we may wr i t e  (72) as  k 

Comparing Eqs. 72 and 75, we see that the effect of separating the two minimizations 
is t o  reduce the formal search, which is necessary to obtain the e r ro r  functionals, from 
a two-dimensional to  a one-dimensional search. * 

A very pertinent question now concerns determination of the value of y Recall that k' 
when the quantization problem was  originally stated we noted that the yk were not con- 
strained variables. 
relative extremum. 
y- must be solutions of the equation 

Thus, the absolute minimum of (74) with respect to yk must be a 
If g is a continuous function, the relative extrema and therefore 

4, 

k 

It can be shown that if g, a s  well  as being continuous, is a convex error-weighting func- 
tion and i f  px 
xk and -00s q S  Q), then Eq. 76 has only one solution. This solution is a relative minimum 
and is therefore the value of yk which w e  have called yk. Thus it should be evident that 
in this case the labor involved in obtaining the e r ro r  functionals is greatly reduced. 

along the set of possible values for yk. 
required to determine the error-weighting functionals. 

(6,q) is nonzero over some subinterval in the interval defined by xk-l < 6 < 
9 s  

* 

* 
For noncontinuous error-weighting functions, yk is determined by a direct search 

In th is  case there is no reduction in the labor 

4 . 4  A SECOND VIEW OF THE QUANTIZATION PROBLEM 

Our objective now is to derive an alternative expression for the quantization e r ro r  
when the quantizer-input signal is a message signal corrupted by noise. In section 4. 1 

we found the measure of the quantization error (Eq. 67) .  

zation e r r o r  be denoted by the random variable A. 

Now suppose w e  let the quanti- 

That is, 

= q - Q(5) 

= ? - Y i  xi-l s s < Xi' i =  1, 2, ..., N. 

Solving (77) for q and substituting this in (67), we obtain 

(77) 

If the terms of (78) a r e  rearranged by interchanging the order of integration with respect 
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to X with the summation on i and the integration with respect to c,  we have 

From (79) it is apparent that the t e rm 

is a function of X and the quantizer parameters. 
sider the kth te rm of the sum, Eq. 80. An examination of this kth te rm indicates that 
it represents the contribution to the amplitude probability density of the e r ro r  signal by 
that portion of the quantizer-input signal having amplitudes in the range xk-l C 

Thus, since the amplitude regions xk-l S 
sive, (80) is the amplitude probability density of the e r r o r  signal. 

Let us  now interpret this term. Con- 

< xk. 
< xk, k = 1, 2,  . . . , N, a r e  mutually exclu- 

That is, 

Substituting Eq. 81 in Eq. 79, we have 

Equation 82 indicates, as  did Eq. 32 for the uncorrupted signal case, that the problem 
of designing the optimum quantizer is equivalent to the shaping of the amplitude proba- 
bility density of the e r ro r  signal so that the property indicated by the error-weighting 
function g is minimized. 
by the number of levels (N) and by the joint amplitude probability density of the quantizer- 
input signal x and the message signal s. 

This operation of shaping the e r r o r  density is constrained 

4.5 THE NATURE O F  THE ABSOLUTE MINIMUM 

For the case of an uncorrupted quantizer-input signal we were able to prove 
(section 3. 1) for  rather general conditions that the absolute minimum of the e r ro r  sur-  
face wi l l  be located at one of the e r ro r  surface's  relative minima. 
not been obtained for the case in  which the quantizer-input signal is a corrupted mes- 
sage signal. 
in the additional complexity of the problem, because of the corrupting effect of the noise. 
In fact, it is not feasible, because of the nature of the equations specifying the relative 
extrema, t o  define an algorithm that permits us to locate these relative extrema of the 
e r r o r  surface. 

A similar result has 

The primary reason that such a result cannot be obtained in this case lies 
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There is ,  however, one case of interest where the e r r o r  surface has only one relative 
extremum, a relative minimum. This relative minimum, which is also the absolute mini- 
mum, can be found by using the methods of calculus. W e  shall consider this special case. 

4.6 CONSTRAINED TRANSITION VALUES 

When the quantizer-input signal is a message contaminated by noise the quantization 
e r r o r  for constrained transition values is 

(Equation 83 is identical to  Eq. 67 with fixed transition values.) The e r ro r  in (83) is a 
function of the y. only. 

1 
Making use of Eq. 38 in connection with Eq. 83, we find that the representation values 

a r e  specified by solutions of the set  of simultaneous equations 

In writing (84), we have assumed the error-weighting function g to be continuous. Since 
each of the members of (84) contains but a single yk, they may be solved independently 
to determine the parameters that specify the relative extrema. 

a unique solution if the error-weighting function is strictly convex. 
mum is the absolute minimum of the e r ro r  surface and is easily located by using the 
methods of calculus. 

4.7 SPECIAL 3ESULTS FOR g(e) = e 

Proceeding in a manner identical to  that of section 3.5, we find that Eq. 83 will have 
This relative mini- 

2 

At  this point in our discussion we would like to  turn our attention to a problem which, 
at  first, may seem completely unrelated to  the problem that is being considered here. 

x = s @ n  

Fig. 9. 
Concerning the optimum nonlin- 

e ear  zero-memory filter. 

'I 
Consider the block diagram of Fig. 9. 
function f(E) that minimizes the mean-square value of the e r ror ,  

Firs t  of all, we want to  determine the specific 
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The specific f(S) denoted by F(E) which minimizes (85) is given by the con- 
ditional mean, 

Po3 

(For a derivation of this result see,  for example, By substitution of Eq. 86 
in Eq. 85, we find that the minimum value for the e r r o r  is 

Assume that this optimum filter F(E) is approximated in the minimum mean-square- 
e r r o r  sense by an N-step approximation. 
the e r r o r  resulting from this step approximation to F(S) and the e r r o r  resulting from 
minimum mean-square-error quantization with N-levels. 

We want to determine the relationship between 

In order to obtain the desired relation, we first compare the e r ro r  between step 
and y .  and quantization with the same parameters. approximation with parameters x 

(These parameters a re  not required to be either the optimum step parameters o r  the 
optimum quantizer parameters.) The e r ro r  resulting from this step approximation 
is 

i 3 

Substituting the optimum filter characteristic (86) in (88) and expanding, we obtain 

In like manner the quantization e r r o r  for the same pa-rameters x. and y .  is 
1 3 
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Comparing Eqs. 87, 89, and 91, we see  that 

&Q = gmin ' &F* (92 

Thus, since gmin is a constant, the parameters x. and y .  that minimize 8 
mize gF. 
mum mean-square-error quantizer. (A result somewhat similar to this has been obtained 

44 by D. A. Chesler. ) 

also mini- 
Therefore, the optimum step approximation to F(5) is identical to  the mini- 

1 J Q 

4.8 OTHER FIXED-FORM, NONLINEAR, ZERO-MEMORY FILTERS 

We have considered the problem of designing optimum quantizers when the quantizer- 
In this section we  shall demonstrate input signal is a message signal corrupted by noise. 

that the quantization algorithm can be extended to  design other types of fixed-form, non- 
linear, zero-memory filters. 

Let us consider the problem of designing the optimum piecewise-linear filter, that 
is ,  a filter having an input-output characteristic specified by 

These linear segments a r e  not required to  be connected. 
of this filter is pictured in Fig. 10. 

The transfer characteristic 

Proceeding in a manner identical to  that of sections 4.. 1 and 4.2, we obtain for the 
filter e r r o r  

In order to specify the optimum filter of this form, we must minimize (94) with respect 
to the parameters xi, m., and b The m .  and bk a r e  
unconstrained variables. 

subject t o  the constraints (68). 
J k' J 

An algorithm which will permit us  to determine the optimum H(f)  is easily formulated 
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Fig. 10. Input-output characteristic of a piecewise-linear filter. 

by using the techniques previously employed in the quantization case. 
that in this case there will be three sets of decision functionals instead of two as in the 
quantization case. 

Note, however, 

Suppose that we desire that our piecewise-linear filter be continuous. That is ,  we 
want the filter parameters to satisfy 

k =  1, 2 ,  ..., N -  1. (95) 

In order to determine this optimum filter Eq. 95 must be minimized subject to  the con- 
straints expressed by Eqs. 68 and 95. In general, a set of additional constraints such 
as Eq. 95, w i l l  not complicate the application of the algorithm. In this particular prob- 
lem the additional constraints wi l l  actually simplify the problem, since they establish 
a relationship between mk and bk at each level, thereby reducing the dimensionality of 
the problem. 

A careful examination of the material presented in section 4. 7 for the e r ror -  
weighting function g(e) = e', indicates that the result obtained there for the quantizer 
is also valid for the piecewise-linear filters just discussed. 

It should be clear from our discussion that the type of algorithm obtained for 
the quantizer and the piecewise-linear filters can also be obtained for any piecewise- 
polynomial filter, 

x , < E < X k  k- 1 k =  1, 2, ..., N. 

In addition to the realizability constraints, Eq. 6 8 ,  which must be applied, up to (p-1) 
constraints concerning continuity in value, continuity in slope, etc. may be included in 
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the formulation of the algorithm. 
as being valid for the quantizer and the piecewise-linear filter, is also valid for the gen- 
e ra l  polynomial filter, Eq. 96. 

It can be shown that the result of section 4. 7, a s  well 
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V. A COMPUTER STUDY 

We shall demonstrate the application of the quantization algorithm that was devel- 
oped in Section 11. In particular, we shall use a version of this algorithm, adapted for 
computer use, to  determine optimum quantizers for a specific quantizer-input signal. 
Several error-weighting functions will  be considered. 

quantization algorithm is discussed in detail in Appendix C .  

The computer version of the 

1 I 
20 40 60 100 200 400 600 1000 2000 6ooo 

FREQUENCY (CPS) 

Fig. 11. Power density spectrum of the quantizer- 
input signal. 

The specific signal that is used in this study consists of the two spoken sentences, 
"Joe took father's shoe bench out. 
contain most of the important phonemes and have a frequency spectrum (see Fig. 11) 
that is roughly typical of conversational speech. 
who used it in a preliminary study of the optimum quantization of speech. 
portion of the amplitude probability density of this sample is shown in Fig. 12. It should 
be noted that this short sample (the two-sentence sample was approximately four seconds 
in length) amplitude probability density is almost identical to published data47 on long- 
sample amplitude densities. 

She was waiting a t  my lawn.1145 These two sentences 

46 

The central 
This sample was collected by Ryan 

After the selection of an input signal for quantization it is necessary to select a 
specific error-weighting function. 
following specific situations: 

For  purposes of this example we shall consider the 

1. Transition values constrained to be uniformly spaced and representation values 
chosen to minimize the mean-square error ;  

38 



I .  

2. Representation and transition values chosen to minimize the mean-square value 

Representation and transition values chosen to minimize the mean-absolute value 
of the error ;  

3. 
of the e r ror ;  

4. Representation and transition values chosen to minimize the mean-square value 
of the percentage error ;  that is, the Y.  and X. a r e  chosen to minimize J 1 

N- 1 
d c [ r  Yi+ - ”.’) 1 px(.$)]. (97)  

(The last quantization scheme illustrates the adaptability of the quantization algorithm 
to  other definitions of the e r ror ,  e.) 

I 

I 

P, ( E  ) t 
0.2 

-3.0 -2.0 -1 .o 0 1 .o 2 .o 3.0 

Fig. 12. Central portion ( - 3 S C S  3) of the amplitude probability density of 
the speech sample. (The original signal x(t) is so bounded that 
-12.8 c x(t) S 12.8 for all t.) 

The quantization algorithm has been programmed on the IBM 7094 digital computer 
for these four quantization schemes. Typical of the results that a r e  obtained through 

the application of these computer programs are those obtained for eight-level quanti- 
zation. 
with the parameters that define the eight-level uniform quantizer and the eight-level 

zation.) A comparison of the columns of Table 1 or Fig. 13 illustrates that the optimum 

Table 1 presents the parameters that define these optimum quantizers, together 

logarithmatic quantizer (p= 100). (See Smith 9 for a definition of logarithmetic quanti- 
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\ 
0 UNIFORM QUANTIZER 
0 LOGARITHMIC QUANTIZER, p = 100 

CONSTRAINED TRANSITION VALUE QUANTIZER 
(MINIMUM MEAN-SQUARE ERROR) 

0 MINIMUM MEAN-SQUARE-ERROR QUANTIZER 
A MINIMUM MEAN-ABSOLUTE-ERROR QUANTIZER 

\ a MINIMIIM MFAN-SQUARE-PFRCENTAGF-FRROR 

2 3 4 

NUMBER OF BITS IN THE QUANTIZER 

5 

Fig. 14. Mean-square e r ro r  versus the number of levels (in bits). (Zero db is the 
mean-square value of the input signal.) 

quantizers tend t o  place more levels in the regions of high probability. 
of the concentration of the levels depends on the error-weighting function, the amplitude 
probability density of the quantizer-input signal, and the quantization scheme. Figure 14 
compares the mean-square value of the quantization e r ro r  for these six types of quan- 
t izers  as a function of the number of quantization levels. 

The exact nature 

In section 2.4 it was shown that the process of determining the optimum quantizer 
is equivalent to shaping the amplitude probability density of the e r r o r  signal in  such a 
manner that some property of this density specified by the error-weighting function g is 
minimized. This being the case, we expect these e r r o r  probability densities to present 
a good picture of how the optimum quantizers achieve their reduction in e r ror .  Figure 15 
pictures the e r ro r  amplitude probability densities of the six eight-level quantizers 
pictured in Fig. 13. 

In any optimum signal-processing system it is of interest to consider how the e r r o r  
varies when a signal other than the "designed for" signal is applied to  the system input. 
Figure 16 is a plot of the normalized quantization e r ro r  for a number of quantizers 
(eight-level quantization) versus an amplitude scaling factor that was used to modify the 
original quantizer-input signal. In each case the value of the normalized quantization 
e r r o r  that is plotted is the actual quantization e r r o r  divided by the mean-square value 
of the quantizer-input signal which yielded that e r ror .  Each of the curves is normalized 
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to zero db independently. Observation of this figure indicates that we can expect more 
variation in the value of the normalized mean-square quantization e r r o r  in the case of 
uniform quantization than in any of the optimum quantization cases studied. And, in 

A 

n 
U 

D 
W 

N 

L 

0 UNIFORM QUANTIZER 

0 CONSTRAINED TRANSITION VALUE QUANTIZER 
(MINIMUM MEAN-SQUARE ERROR) 
MINIMUM MEAN-SQUARE-ERROR QUANTIZER 

0 MINIMUM MEAN-ABSOLUTE-ERROR QgANT!ZEP. 

A MINIMUM MEAN-SQUARE-PERCENTAGE-ERROR 
QUANTIZER 

4 

1 0.5 0.6 0.7 0.8 0.9 1 .o 1.1 1.2 

AMPLITUDE FACTOR 

Fig. 16. Normalized quantization e r r o r  versus amplitude scaling factor, 
eight-level quantization. 

particular, the three cases in which we a re  at  liberty to optimize over both transition 
and representation values show the least variation. 

Results concerning the power density spectrum of the quantizer-output signal and the 
associated e r ror  signal for the case in which the quantizer-input signal is speech have 
been presented in a thesis by G. Crimi. 48 
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VI. CRITIQUE AND EXTENSIONS 

In this report we have developed an approach to the problem of designing optimum 
quantizers for both signals uncontaminated by noise and signals contaminated by noise. 
In both instances the approach was based on the philosophy that the quantizer is a non- 
linear, zero-memory filter of a fixed basic form. The algorithms developed here pro- 
vide a method of obtaining the parameters that define optimum quantizer, given the 
amplitude probability density of the signal (joint amplitude probability density of the 
quantizer-input signal and the noise for the contaminated signal case) and a suitably 
chosen error-weighting function. Several observations concerning the nature of these 
algorithms may be made. 

First, because of the nature of the minimization problem, which is due to the possi- 
bility of boundary solutions, it is necessary to obtain an algorithm that searches for the 
absolute minimum within the region of variation, rather than one that searches for rela- 
tive minima. The algorithm thus obtained is applicable for convex and nonconvex error-  
weighting functions and for discrete and continuous amplitude probability densities. 
Second, one observes from the formulation of the e r ro r  functionals that after an initial 
set of computations the computation time required to calculate the parameters specifying 
the N-level optimum quantizer is directly proportional to (N-1). 

The work presented in this report also suggests two possible areas of future 
research. We have shown that the quantization algorithm can be extended to other types 
of fixed-form nonlinear, zero-memory filtering. One interesting area for further study 
is the possible extension of this algorithm t o  the design of optimum nonlinear systems 
with finite memory. The second suggestion for further study comes from the alternative 
formulation of the quantization error.  This alternative formulation suggests that the 
problem 49s50 of simultaneously designing a discrete signal which will be corrupted by 
noise and a nonlinear, zero-memory filter in the form of a quantizer can be approached 
by using an algorithm similar to  the quantization algorithm. 
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APPENDIX A 

Dynamic Programming 

We shall now investigate on a basic level the technique called Itdynamic pro- 
gramming." 37y38 Our purpose is to obtain a working definition of this technique and to 
apply this definition to a very simple allocation problem. 

A. 1 INTRODUCTION 

Basically, dynamic programming is a technique for solving a large class of problems 
which either a r e  o r  can be transformed into multistage decision processes. (Multistage 
decision processes a re  sometimes called llmultistage allocation processes.") A problem 
is considered a multistage decision process i f  it can be formulated in such a manner 
that the parameter values that define the solution of the problem can be determined one 
at a time. (Many of the problems in the calculus of variations can be formulated as  
multistage decision processes. 51) The decisions in determining this solution a r e  made 
according to some well-defined criterion. This criterion is usually expressed as a 
maximization o r  minimization of a function of the parameters defining the process. In 
general these process-defining parameters a re  subject to some set  of constraints. The 
set  of values of these parameters which satisfies all of the constraints is known as  the 
region of variation. 

In applying the technique of dynamic programming to a particular problem the pri- 
mary  objective is to imbed the problem of interest in a family of similar problems in 
such a manner that a complicated process is decomposed into a number of relatively 
simple processes. In order to investigate this technique we shall consider a simple 
allocation problem. 

A. 2 SIMPLE ALLOCATION PROBLEM 

In our allocation problem we assume that a sum of money X is available to be 
If xi is the invested either in par t  o r  in full in (N) activities Ai, i = 1, 2 ,  . . . , N. 

Fig. A- 1 .  A possible return function. 
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allocation to  the ith activity the return from this activity will  be given by a.(x.). 
A-1 pictures a possible return function. 

Figure 
1 1  

Our objective in this allocation problem is to  maximize the return from our invest- 
In order to proceed in the mathematical formulation of the problem we  make ment. 

three assumptions concerning the investment procedure. 

(i) The returns from each of the investments can be measured in a common unit. 
(ii) The return from any activity is independent of the allocations to the other 

activities. 
(iii) a.(O) = 0 for all i. 

1 
Applying these assumptions to the problem, we have for R, the total return, 

This total return from our investment is subject to the constraint 

$ xi = x, 
i= 1 

(A. 2) 

where X is the amount to be invested and the set of constraints 

x. 3 0  i = 1 , 2  ,..., N. (A. 3) 1 

Equation A. 2 limits the total investment to the amount of resources available. 
A. 3 limits each of the allocations to a positive quantity. 
necessary, since the concept of negative investments is not defined. 

Equation 
This set of constraints is 

Specifically, we want to determine the maximum value of the return, A. 2,  and the 
values of the xi yielding this maximum return for any investment x, 0 S x S X. 

At  this point in our discussion a logical question to ask is, Why not use the methods 
of calculus to determine the solution? To this, we might reply in the following way. 
When we  apply calculus to the allocation problem (or to problems of a similar struct- 
ture) w e  find one problem that calculus cannot surmount: The absolute maxima (or 
minima when allocations a re  made on the basis of a functional minimization) will  fre- 
quently be at a point on the boundary of the region of variation. Generally, this point 
will not be a relative extremum. If the boundary solution is not a relative extremum, 
the slope at the point will  not be zero and cannot be found by using the methods of 
calculus. 

Since we do not know a priori whether the solution wi l l  be at a relative extremum or  
on the boundary, a solution obtained by using the methods of calculus may be incorrect. 
To insure a correct solution to the allocation problem, we  must employ a technique 
that searches for the absolute maximum of the surface within the region of variation. 
Dynamic programming is such a technique. 
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A.3 A GRAPHICAL SOLUTION TO THE ALLOCATION PROBLEM 

Before we formulate the allocation algorithm in equation form w e  want to consider 
W e  shall begin by considering the first  two activ- 

Making 
it as a graphical search technique. 
ities, A1 and A2, which have return functions a (x ) and a2(x2),  respectively. 
use of the results of the preceeding section, we find that the total return from these two 
activities is 

1 1  

and is subject to the constraints 

x t x 2 = x  1 
and 

We want to determine for each x in the range 0 S x C X the maximum return and the 
values of x1 and x2 which yield this maximum return. 

One method of determining the maximum value of the return for a specific x, say 
x = a ,  is to search the return surface along that portion of the line 

x + x  = a  1 2  

contained in the region of variation. 
R(xl,x2) is plotted along an axis directed out of the page. 

This search path is indicated in Fig. A-2, where 
By examining each of the 

A PARTICULAR SEARCH PATH 

x2 

X 

'2 

PROJECTION OF A TYPICAL 
ABSOLUTE MAXIMUM CURVE 

X x1 

Fig. A-2. Typical search path in the Fig. A-3. Typical projection of the absolute 
maximum onto the (xl ,  x2)-plane two-activity allocation prob- 

lem. for  the two-activity problem. 
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. 

points on the search path the absolute maximum of the return surface for this specific 
allocation is easily determined. If this process is repeated for all x in the range 
0 < x < X, a curve such as  that shown in Fig. A-3 is obtained which indicates the x 
and x that maximize the return for a specific x. 2 

Now, consider the problem of maximizing the return from the first three activities, 
x2 in A2, and x3 

1 

A1, A2, and A3. 
in A3 is 

The return from the investment of x1 in activity AI  

R(x1,x2,x3) = al(xl)  + a2(x2) + a3(x3) (A. 7) 

and is subject to the constraints 

x 1 2  + x  + x 3 = x  (A. 8) 

and 

x 2 0  x1 2 a O\ (A. 9) 

W e  want to determine for each x in the range 0 S x C X the maximum return and the 
values of x x,, and x which yield this maximum return. 1' 3 

Upon first inspection it appears that in this three-activity case we must employ 
some type of three-dimensional search technique in order to obtain the desired solution. 
Consider such a three-dimensional search. It will  be a search along the plane, (A. 8), 
for a specific value of x, say x = a.  Such a search might be conducted by assuming a 
value for x consistent with the constraints, and then determining the optimum allo- 
cation of the remaining resources between x1 and x2. This operation would be repeated 
for each x3 satisfying the constraints, that is, for x satisfying the inequality 

3 

3 

0 < x3 6 a. 

From an examination of the results of these calculations we obtain the absolute maxi- 
mum for this particular value of x, x = a.  

the amount x - x3 (or to use the value of x used previously, a - x3) to be allocated to 
the activities A1 and A,. This is the same problem, however, as the two-activity 
allocation problem just considered. The basic difference is that now instead of 
investing an amount x in the two activities w e  invest x - x Since x is posi- 
tive or  zero we know that 

W e  should observe, however, that once a value for x3 is selected, there remains 

3' 3 

x - x 3 <  x s  x 

and since the optimum two-activity allocation problem has been solved for all invest- 
ments in the range 0 < x < X, we can use the results of this solution without further 
search to determine the maximum return for the first two activities in the three-activity 
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problem. It is possible to make use of this solution because the two-activity return sur- 
face R(xl , x2) is a subsurface of the three-activity return surface R(xl , x2, x3). That is, 

R ( x  x ) = R(xl,X2,0) (A. 10) 1’ 2 

since a.(o) = 0 for i = 1, 2, . . . , N. 
able to reduce the three-dimensional search to a two-dimensional search. 

Thus, by making use of our prior knowledge, we a re  
The resulting 

1 

t x3 

REGION OF VARIATION 

THE VALUE OF THE SURFACE AT THIS POINT IS 
max 

A TYPICAL SEARCH PATH 

Fig. A-4.  Typical search path in the three-activity allocation problem. 

X 

PROJECTION OF A 
TYPICAL ABSOLUTE 
MAXIMUM CURVE 

=- ( x , +  x * )  
X 

Fig. A-5.  Typical projection of the absolute maximum 
onto the [(x t x  ) , x  ]-plane for the three- 
activity problem. 

1 2  3 
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two-dimensional search path is indicated in Fig. A-4. 
x in the interval 0 s x s X a curve such as the one shown in Fig. A-5 is obtained. 
This curve indicates the division between x3 and (x +x ) which maximizes R(xl, x2, x3) 
subject to the constraints. 
A-3) can then be used to determine how the amount of resources represented by the sum 
(x1+x2) is allocated between the first  two activities. 

It should be clear that a s  we continue the allocation problem by adding an additional 
activity we can always reduce the search that is necessary to determine the maximum 
return to a two-dimensional search by utilizing the results of the previous calculations. 

Bellman's technique of dynamic programming has its basic foundation in the type of 

By repeating the process for all 

1 2  
The results of the two-activity allocation (pictured in Fig. 

search which we have just illustrated. 

max 
i 

0 Sx. s x s x  
[ri (x-x.)+a. (x.)] - 1 1 1  

X r .(x) = 
1 

1 

max 
r N (x) = XN IrN-1 (x-xN)+aN(xp~l 

0sx"(x'(x 
2 

A . 4  FORMAL STATEMENT OF THE ALGORITHM 

Formally, the search procedure outlined graphically in the preceding section is 
specified by two sets of functionals; the return functionals {ri(x)} and the allocation 
or  decision functionals {Xi(x)}. Both of these sets of functionals have members for 
i = 2, 3, . . . , N, where N is the number of activities that a r e  of interest. These func- 
tionals are defined in the following manner: 

t 

1 X2(x) = the value of x2 that maximizes [al(x-x2)+a2(x2)1 

0 S x S X; for the resource x, 

t X3(x) = the value of x3 that maximizes [r2(x-x3)+a3(x3)] 

for the resource x, 0 S x S X; 

X (x) = the value of xN that maximizes [rN-l(x-xN)+aN(xN)I 

0 S x 6 X. 
N 

for the resource x, 

(A. 11) 

(A. 12) 

5 1  



From an examination of these functionals and from our previous discussion it is 

clear that rN(x) enumerates the maximum value of the return, R(xl, x2,. . . , xN), subject 
to  the constraints for all x in the range 0 < x S X. The specific allocations to the 

activities are  determined from the decision functionals. Suppose that we decide to invest 

an amount a ,  0 d a d X, in the N-activities. Then we invest an amount 

in the Nth activity, an amount 

xN-l = xN-l [a-XNl 

th in the (N-1) activity, an amount 

xN-2 = xN-2[a-x N -x N-1 1 

in the (N-2)th activity, and so forth, until 

x = a - x N  - xN-l - . . . - x2 1 

remains to be invested in the first  activity. 
return. 

These allocations wi l l  yield the maximum 
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APPENDIX B 

The Quantization Algorithm - A Graphical Search Technique 

We want to  consider the quantization algorithm as a search technique. We recall  
from Eq. 4, that the quantization e r r o r  is given by 

N-1 

&= 1 1 X. i+i G[ g(~-yi+l) px(s) j 
i = O  1 

where xo = X and xN = Xu; X and X a r e  constants. It should be clear from the s im-  
ilarity between this equation and Eq. A. 1 that the solution to this problem can proceed 
in a manner similar to the procedure employed in the allocation problem if the t e rm 

P P U 

is regarded a s  the "return" from an activity. 
between these problems. 
lem is minimization rather than maximazation as it was in the allocation problem. 

There a re ,  however, two differences 
First, the operation to be performed in the quantization prob- 

Second, there is a difference in  the nature of the surface over which the search is 
conducted. 
allocation x in the interval 0 C x C X. Thus, in each of the searches along the sub- 
surfaces of the total return surface it was necessary to search over the entire 
region 0 S x 6 X. In fact, we observe in the allocation problem that even if we 
had wanted to  obtain the return for a single amount of resources X it would still 
have been necessary to perform all  of the searches over this same interval 0 C x C X. 
This fact is confirmed by a consideration of the nature of the allocation process, 
(see section A. 4). 

In the allocation problem we wanted to obtain the maximum return for every 

In the quantization problem the decisions concerning the placement of the quantizer 
parameters must be made in exactly the same way a s  we made the decisions in the allo- 
cation problem. 
"resources" available for  quantization. 
permit xN to vary over the region 

Therefore, it wi l l  be necessary to permit a variation in the amount of 
That is, instead of requiring xN = X we must 

U 

Only by doing this can we obtain the necessary information to  make the decisions con- 
cerning the optimum parameter placement. 
lem we shall search along an extended er ror  surface instead of along the e r r o r  surface, 
(B. 1). 

Specifically, then, in the quantization prob - 

We are now ready to  examine the search technique. In order  to simplify our dis-  
cussion, we make use of the results of section 2.6 to write Eq. B. 1 as 
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* 
The yk a r e  defined in section 2. 6. 

is, we shall consider two-level quantization. 
Preceeding a s  we did in  the allocation problem, we begin with two activities; that 

The quantization e r r o r  for this case is 

The extended e r ro r  surface over which the search is conducted is specified by 

The minimization for the two-level quantizer wi l l  be subject to the constraints expressed 
by the inequality 

XP = xo x s x2 s xu. (B. 7) 1 

Equation B. 7 defines the region of variation. 

Fig. B-1. A typical search-path in the two-level quantization problem. 
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One possible search technique is to  select a value for x2 , say x2 = a , and search 

d (xl , x2) is plotted 
along that portion of this line within the region of variation. 
boundaries to  the region of variation a r e  indicated in Fig. B-1. 

along an axis directed out of the page. By examining each of the points on that portion 
of the search path within the region of variation, the absolute minima of the e r r o r  for 
this particular value of x2 = a, is easily obtained. If we repeat this process for  all x2 
in the region XI G x2 G Xu, a curve such as that shown in Fig. B-2. is obtained. This 
curve indicates the value of x which minimizes the e r r o r  for  any x2 within the range 

This search path and the * 

1 
XL 6 x2 c xu. 

Next we  consider the problem of minimizing the e r r o r  involved in three-level quan- 
tization. The extended e r r o r  surface in this case is given by 

+ s x 2  dE[ g(E-Y@ Px(E)) 
x1 

The search along this surface will be subject to  the usual constraints 

X I =  x 0 6 x1 cx2 G x 3 xu. (B. 9) 

which define the region uf variation. 
Upon first inspection it appears that a three-dimensional search will be necessary 

to determine the parameters that minimize the quantization error .  
reduction can be achieved in this case just as it was in the allocation case. 
that since 

A dimensionality 
We observe 

(B. 10) 

* * d ( x l , x Z )  will be a subsurface of d (xl , xZ ,x3) .  Specifically, 

This result can be employed to reduce the search from three dimensions to two in  the 
way that Eq. A. 10 was used similarly in the allocation problem. 
search situation that results upon dimensionality reduction is pictured in Fig. B-3. 

If the search indicated in  Fig. B-3 is repeated for all x3 in the interval X 6 x3 6 Xu, 

The two-dimensional 

P 
a curve such as that shown in Fig. B-4 is obtained. This curve indicates the optimum 
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THE SURFACE HAS THE VALUE ( x1 ) lx2 r ALONG THIS LINE 

- 
xQ 

PROJECTION OF A TYPICAL 
ABSOLUTE MAXIMUM CURVE 

----- 

Fig. B-2. Typical projection of the absolute minimum onto the 
( x ~ ,  x )-plane for the two-level quantization problem. 2 

x3 
REGION OF VARIATION 

TYPICAL SEARCH PATH 
THE VALUE OF THE SURFACE AT THIS POINT I S  

Fig. 3.  Typical search path in the three-level quantization problem. 



- x2 

PROJECTION OF A 
TYPICAL ABSOLUTE 
MAXIMUMCURVE 

Fig. B-4. Typi 1 projection of the absolute minimum onto th  
(x2, x )-plane for the three-level quantization problem. 3 

selection for x2, given a specific x 
the two-level quantizer search (Fig. B-2) are used to determine the optimum xl.  

quantizer case, it should be evident that this same reduction can be accomplished for 
each of the remaining levels. 
problem from one involving a search along an (N-1)-dimensional surface to (N-1) 

searches, each of which is along a two-dimensional surface. 

Once this optimum x2 is obtained, the results of 3' 

Now that we have seen how the search dimensionality is reduced in the three-level 

Therefore, for the N-level quantizer we have reduced the 

57 



APPENDIX C 

Computational Aspects of the Quantization Algorithm 

Our objective is to discuss from a computational point of view the quantization algo- 
rithm that w a s  presented in Section II. 
puter program that determines the e r r o r  and decision functionals. 
presented in section 2. 2 we know that the parameters defining the optimum N-level quan- 
t izer  can be determined from a knowledge of the first N members of these three sets  of 
f u n c t i o m ? ~ .  
defining the optimum K-level, K 
ledge of the first  N members of these three sets  of functionals. 

We shall also present the block diagram of a com- 
From the discussion 

Ir, fact, it fo??ows from the nature of these functionah that the parameters 

N, quantizer can also be determined from a know- 

In our original presentation of the quantization algorithm we assumed that the prob- 
ability density of the input signal x is known for all values of x and that the e r r o r  and 
decision functionals a r e  calculated for all values of x within the region X x xu. 
When we begin to consider the algorithm from a computational point of view, however, 
we realize that the calculations necessary to determine the e r r o r  and decision functionals 
at every point in the desired interval a r e  too numerous to perform. 
we shall limit our calculations to the determination of the e r r o r  and decision functionals 
at M equally spaced grid points covering the interval Xp s x s xu. These grid points 
will be denoted by the variable 5, k = 1 , 2 ,  . . . , M. Figure C - 1  pictures a typical grid 
structure. We shall assume that these M grid points a r e  sufficiently dense that as far 

as the quantizer under design is concerned the e r r o r  and decision functionals appear to 
by calculated at every point in the interval XI s x s Xu. 
density of the signal w i l l  be defined only at the grid points. 
probability density at the grid points is given by 

For this reason, 

The amplitude probability 
The value of the amplitude 

Basically, the computational problem is to  calculate the e r r o r  functionals, Eq. 24,  
since the decision functionals a r e  obt&ined as an ancillary result of these calculations. 
A careful examination of the members of Eq. 24 is marked by the appearance of a te rm 
of the form 

in each member of this set  of functionals. 
functionals is identical to the search technique demonstrated in Appendix B, it will be 
necessary to calculate every te rm of the form of Eq. C. 2 ( N - I )  times in order to  

Since our method for determining the e r r o r  
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' a  + 

'u - 'Q 
M I 

+ 2  ( Xu - X I )  
M 

I I 
1 I 
I 

Xm + (M-1) ( ''i ") 

Fig. C-1. Typical grid structure. 

determine the first N e r r o r  functionals. 

tionals wi l l  be calculated only at the M grid points. 
t e rms  of the form of (C. 2). 

In our discussion we indicated that the func- 
M(M+I) 

In the interest of computational speed, the values of these 

Therefore, there a r e  

M(M+l) - t e rms  will be calculated once, and then stored for later use in determining the 
e r r o r  functionals. The same calculation and storage procedure will be utilized for the 
yk . By definition 
* 

and 

ro: 
= the value of y .  that minimizes 

yj, k 3,k 

= the value of y that minimizes 
j ,  k 

such that 
6j" si-( 

W e  have denoted the variable yk by y.  
points. 

in Eqs. C .  3 - C .  6 in order t o  indentify both end 
J,k 
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It is interesting to note that in so far as direct computation is concerned, TABLE 
and y a re  the only terms dependent on g. This implies that only a small portion of 
the computer version of the quantization algorithm need be changed in order to  change 
the e r r o r  -weighting function under consideration. 

Now that we have defined the two sets of values, TABLE and y , we must consider 

From a comparison 

* j ,  k 
j , k  

* 
how they are  used to calculate the e r r o r  and decision functionals. 
of the first e r ro r  functional, Eq. 24, and TABLE we see  that the value of the f i rs t  e r r o r  
functional at the M grid points is given by 

Similarly, 

and by using Eq. 8,  

Now that we have demonstrated that the first e r ro r  functional can be determined from 
TABLE, we turn our attention to  the second e r r o r  functional, E ~ ,  

dix B, we observe that in order to  determine e2(ck) [and therefore Y2(ck) and X2(ck)] 

we must search the modified e r r o r  surface along that portion of the line x2 = ck which 
is within the region of variation. 
value of the surface at each of the (k) grid points on the line within the region of vari- 
ation and the boundary point. In order to  illustrate this search, let us  examine it for 
the case k = 3. 
region of variation. 
cates that the first point on this line represents the allocation of that portion of the signal 
represented by the grid points e , ,  c,, and 5 to  the second quantization interval. The 3 
second point on x2 = 6, represents the allocation of 5, to the first quantization interval 
and c2 and 5, to  the second quantization interval. The third point represents the allo- 
cation of e l  and c2 to  the first-quantization interval and the allocation of 5, to the second 
interval. 
tization interval. 
TABLE1,3; at the second point, 
TABLE3,3; and on the boundary E l(c3). 

that is, selecting the minimum of 

Referring to  Appen- 

For  x2 = 6 this search wi l l  consist of examining the k 

Since k = 3 there a r e  three grid points on the line x2 = c3 within the 
An examination of the grid structure and the e r r o r  functionals indi- 

The boundary point represents the allocation of 5; c,, 6, to the f i rs t  quan- 
From Eqs. 7 and C. 3 ,  the value of the surface at the first point in 

t TABLE2,3; at the third point, ~ ~ ( 5 ; ~ )  t 

The search along this line consists of selecting the minimum of these four values, 

TABLEI ,3 D 
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Assume that the minimum value along this line is at the second point. Then 

~z (C3)  = E l ( C 1 )  + TABLE2,3 

/ READ: 
Ei,P ( E . )  

X I  
j = 1.2. ..., M 

A 

1 ( C .  10) 

This equation illustrates how each of the points in the e r r o r  and decision functionals are 

obtained, once the minimum value on the line of search (in this case x2 = c3) has been 
obtained. This procedure will be used to search along each of the M lines involved in 
the determination of the second e r r o r  and decision functionals, thereby determing 

EZ(Sk)# y2(Ck)# and XZ(6k), = ’ S ‘ S .  * S M *  

6 

c j  j = 2  

Fig. C-2.  Block diagram of the computational version of the quantization algorithm. 
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There are two special cases of Eq. 42 which should be discussed at this time. F i rs t ,  
. 

consider the case in which the minimum is at the first grid point on the line of search. 
As we have previously shown, this first grid point indicates that all of the signal is being 
allocated to the second quantization interval. 
indicates the largest grid point in the first quantization interval, for this special case 
X2(ck) will equal Xi. 
cates for the line of search x2 = ck that the portion of the signal represented by e,, 
E,, e,, . . . , Ek is all allocated to the f i rs t  quantization interval. 
cation to the second quantization interval, Y2(ck) may be defined to be any convenient 
value; X,(ck) will equal 5,. 
a re  determined in the manner indicated by (C. 10). 

Since by our convention in Eq. 42, X2(ck) 

This point indi- Second, we want to consider the boundary point. 

Since there is no allo- 

In each of these two cases the remaining functional members 

From Appendix B we recall that the nature of the search necessary to determine 
each of the remaining e r r o r  functionals is identical to the search used to determing c2. 
Therefore, the methods discussed in connection with c 2  can be applied directly to the 
calculation of these remaining e r r o r  functionals. 

A block diagram illustrating the basic features of the computational version of the 
quantization algorithm is presented in Fig. C-2. 
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